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SUMMARY

We describe a hierarchical model for assessing the reliability of multi-component systems. Novel
features of this model are the natural manner in which failure data collected at either the
component or subcomponent level is aggregated into the posterior distribution, and pooling of
failure information between similar components. Binary regression models are used to augment
the model to account for the degradation of system performance with respect to time or other
environmental factors. An example involving the performance of an anti-aircraft missile defense
system illustrates the methodology.

Keywords: AGGREGATION ERROR, FAILURE MODEL, MULTI-COMPONENT SYSTEM, SYSTEM
RELIABILITY.

1. BACKGROUND

This paper addresses the integration of component, subsystem and system data and
prior expert opinion to assess system reliability as it changes over time. Two prob-
lems in reliability which separately have received much attention in the literature are
thus combined: (1) the integration of available information at various levels to assess
system reliability and (2) estimating reliability growth or degradation. Methodology
for integrating available information in a consistent fashion has proven problematic,
and this paper describes a Bayesian hierarchical model that resolves this difficulty. For
simplicity, we restrict discussion to systems in which components or subcomponents
may be regarded as either functional or not.

To provide context, it is useful to begin with a review of related research in Bayesian
system reliability. Most relevant to the model considered here are the papers by Martz,
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Waller and Fickas (1988) and Martz and Waller (1990), where complex systems, com-
prised of series and parallel subcomponents, were modeled using beta priors and bino-
mial likelihoods at component, subsystem and system levels. Within this framework,
an “induced” higher-level prior was obtained by propagating lower-level posteriors up
through the system fault diagram, and combining these posteriors with “native” higher-
level priors to obtain an induced prior at the next system level. The induced priors
were then approximated by beta distributions using a methods-of-moments type pro-
cedure. The combination of native priors and posterior distributions obtained from
lower-level system data, both of which were expressed as beta distributions, was ac-
complished by expressing the induced priors as a beta distributions with parameters
representing a weighted average of the constituent beta densities. This process was
propagated through subsequent system levels to obtain an approximation to the joint
posterior distribution on the total system reliability.

Many other reliability models are not able to account for prior expert opinion and
data when such information is simultaneously obtained at several levels within a system.
However, Springer and Thompson (1966, 1969), and Tang, Tang and Moskowitz (1994,
1997) have provided exact, and in complicated settings, approximate system reliability
distributions based on binomial data by propagating component posteriors through the
system’s fault diagram. Thompson and Chang (1975), Chang and Thompson (1976),
Lampkin and Winterbottom (1983) and Winterbottom (1994) employed approxima-
tions for system reliability distributions based on exponential lifetimes rather than
binomial data. Others have proposed methods for evaluating or bounding moments of
the system reliability posterior distribution (Cole (1975), Mastran (1976), Dostal and
Tannuzzelli (1977), Mastran and Singpurwalla (1978), Barlow (1985), Natvig and Eide
(1987), Soman and Misra (1993)); the first moment provides an estimate of system re-
liability. Moment estimators have also been used in the beta approximations employed
by Martz, Waller and Fickas (1988) and Martz and Waller (1990). In a somewhat
different approach, Soman and Misra (1993) proposed distributional approximations
based on maximum entropy priors.

Numerous models have, of course, also been proposed for modeling non-binomial
data. Thompson and Chang (1975), Chang and Thompson (1976), Mastran (1976),
Mastran and Singpurwalla (1978), Lampkin and Winterbottom (1983), and Winterbot-
tom (1994) considered models for exponential lifetime data, while Hulting and Robinson
(1990, 1994) examined Weibull models. Poisson count data, where the number of units
failing in a specified period, are discussed in Hulting and Robinson (1990), Sharma
and Bhutani (1992), Hulting and Robinson (1994), Sharma and Bhutani (1994), and
Martz and Baggerly (1997). Currit and Singpurwalla (1988) and Bergman and Ringi
(1997a) considered dependence between components introduced through common oper-
ating environments. Bergman and Ringi (1997b) incorporated data from non-identical
environments.

In many previously-defined reliability models, a logical difficulty arises when prior
information and data are combined at distinct component levels. Bier (1994) discussed
this difficulty, which arises because data integration may be accomplished in one of
several ways. In one approach, component-level priors and data are propagated up-
ward to higher system levels in order to obtain a system-level posterior. In another,
component-level priors are propagated to the system level, where they are combined
(only) with system-level data to obtain a posterior distribution on the system reliabil-
ity. Unfortunately, these approaches generally yield different posterior distributions on
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the system reliability. This effect is known as aggregation error.

Johnson, Graves, Hamada and Reese (2001) proposed a Bayesian hierarchical model
which bypasses the consistency problems addressed by Bier, but yet is capable of inte-
grating available information at all component levels to yield a posterior distribution
on system reliability. In this article, we extend that approach to account for system
reliability degradation over time.

Previous degradation models for system reliability have typically restricted atten-
tion to settings in which only system-level data are available (e.g., Fries and Sen (1996),
Nolander and Dietrich (1994), and Sohn (1996)). An exception to this trend is Robin-
son and Dietrich (1988), who modeled component-level data collected during system
development using exponential lifetime assumptions and decreasing failure rates. Our
approach differs from that taken by Robinson and Dietrich in that we utilize binary
regression models obtained at multiple component levels to model aging processes.

An outline for the remainder of this article is as follows. In Section 2, we review the
baseline reliability model described in Johnson, Graves, Hamada and Reese (2001). This
model is illustrated with an application to anti-aircraft missile system data in Section
3. The extension of the model to account for time degradation (or other component-
level covariates) is described in Section 4. We conclude with a summary of results and
suggestions for future work in Section 5.

2. METHODOLOGY

To illustrate the baseline model, consider Figure 1, which depicts a fault tree for an
anti-aircraft missile system. The general features illustrated in this figure include the
composition of a system by multiple subsystems, and the composition of these sub-
systems by further subsystems and components. In general, we assume that binomial
data and prior expert opinion are available at different system levels, and that our
primary goal in modeling such systems is the evaluation of the probability that a sys-
tem (missile) drawn at random from the stockpile functions. Secondary goals might
involve advising stockpile/inventory managers of the utility of conducting full-system
or component-level tests to evaluate this probability, and to identify subsystems for
which additional data might best be collected to improve estimation of overall system
reliability.

Several sources of information relevant to estimating system reliability are consid-
ered. The first is binomial data collected from actual component or subsystem tests.
In the augmented degradation model, the age of the component at the time of the tests
or other covariate information is also assumed to be available. The second source of
information takes the form of expert opinion regarding the probability that a specific
component or subsystem fails. This information is accompanied by relevant covariate
values in the augmented degradation model. A third, less precise source of informa-
tion is expert opinion regarding the similarity of the failure probabilities of groups of
components within the system or across different systems. For example, in the missile
system depicted above, an expert may assert that the reliability of the missile battery
is similar to the reliability of a battery in a related missile system, or that reliabilities
of the eject and flight motors are similar. However, the expert may not have knowledge
regarding the specific probability that any component within a group of similar com-
ponents functions. Finally, we incorporate the statistical notion that terminal nodes
(i.e., components in the fault tree having no subcomponents themselves) may also be
grouped into sets of comparably reliable components without the guidance of actual
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Figure 1. Reliability Fault Tree Diagram for an Anti-Aircraft Missile System

expert opinion. In the baseline model, such information is modeled via an exchange-
ability assumption on the terminal probabilities themselves, while in the degradation
model this assumption takes the form of an exchangeability assumption on binomial
regression coefficients.

To model these sources of information, we first assume that the failure probabilities
of components in distinct branches of the fault tree are conditionally independent, and
that the success of the system requires successful functioning of all components. Exten-
sions to systems that include redundant components, or in which component failures
are not independent, are discussed in the summary. Nodes in the reliability diagram are
labeled C}, where i indicates the component or subcomponent index. The function a(7)
provides the parent component (or system) containing (sub)component i, while g(z, m)
indicates the group of components that expert m asserts have similar failure rates to
component 2. We let p; denote the probability that component C; functions when the
missile is fired. The set of components for which test data is available is denoted by S,
and within this set z; denotes the number of times component ¢ functioned successfully
in n; trials. In the baseline model, aging effects are not considered, making a simple
binomial likelihood appropriate for modeling (x;, n;).

In many actual applications, expert opinion plays a potentially important role in
assessing system reliability, particularly in large complex systems for which data col-
lected on individual subcomponents may be sparse. Furthermore, expert opinion may
be available from several experts, and the quality of information obtained from each
expert may vary. In the baseline model, we therefore assume that the prior density
obtained from expert m concerning a specific value of p; takes the form of a beta den-
sity, and we let the set of combinations of (i, m) for which expert opinion is available
be denoted by S;. More specifically, we assume that the net contribution in the joint
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Table 1. Notation used in model definition

C; Component ¢ in system fault diagram
i Probability that component i functions

a(t) Parent of component 4
g(i,m) The group to which expert m assigns component
So Set of components for which test data is available

x; Number of successful trials of component ¢

n; Total number of trials of component i

Dij Success probability of component ¢ under conditions z;;

xij Number of successful trials of component ¢ under z;;

Nij Total trials of component ¢ under conditions z;;

Zij Covariate vector

Bi Regression coefficient for ith terminal node

S; Components for which specific expert opinion is available

Tim Expert m’s point estimate of p;
N,, Beta parameter describing expert m’s precision
Qs B Gamma distribution parameters in prior on IV,
Sa Components for which grouping, information is available

Py Central value of beta density on success probabilities for
components in group ¢ defined by expert m

K, Beta dispersion parameter for component probabilities

in group g around p,, 4

Og.m> €Egum Beta hyperparameters in prior for p,, 4
Comy Mm Gamma hyperparameters in prior for K,
Ss Set of terminal nodes

0o  Central value of beta density assumed for terminal nodes

Jo Pior beta dispersion parameter for g

To, Po Gamma hyperparameters in prior for K,
Yo, W Beta hyperparameters in prior on gg

posterior density arising from such prior information is

(N, + 2)

Nmm; .
L (Nt + DU N (1= i) + 1p; " " (1 = py) Vi)

= B(pi | Nmﬂ'i,m + 1, Nm(l — TI'Z"m) + 1).

In (1), m;,, represents expert m’s point estimate of p;, and N,, represents the
precision of expert m. For concreteness, we assume that each expert precision parameter
N,, is drawn from a gamma density with known parameters «,,, and f3,,, parameterized
here as

G(Nm | am;ﬁm) = %Nﬁ;ml exp(_BmNm)-

Note that expert opinion is assumed to take the form of a binomial likelihood with a
maximum at 7; ,, — this convention eliminates the possibility that the joint density spec-
ified on all model parameters is improper, and also implicitly handles the aggregation
problem identified by Bier (1994) by simply treating expert opinion as data.

When prior information regarding component success probabilities is unknown, but
expert groupings of components are available, (1) is augmented in the baseline model
by assuming that ;,, is replaced by p 4, where pp, , represents the common, but
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unknown, success probability assigned by expert m to components in group g (i.e.,
components for which g(i,m) = g). The contribution to the joint posterior distribution
on model parameters from such information is assumed to take the form

H B(pi ; Kmpm,g + 1, Km(l - pm,g) + 1)- (2)
(i,m)€Sy

Here, S> denotes the combinations of (i,m) for which such grouping information is
available.

As in (1), the parameter K, is assumed to be drawn a priori from a gamma density
having parameters ¢, and 7,. The prior success parameter p, , is assumed to be
drawn from a beta density with known parameters d,,, and €, ,, respectively.

Finally, for terminal nodes in the fault tree a hierarchical prior specification may
be obtained by further assuming that each terminal node’s success probability is drawn
from a beta density with parameters Jyog and Jo(1 — gg). The set of terminal nodes is
denoted by Ss3.

For notational simplicity, we assume that all terminal nodes are, a priori, exchange-
able, but this restriction may be relaxed by using expert judgment to group the terminal
nodes in a manner similar to that used in the specification of (2). In that case, Jy and g
would be subscripted with the appropriate prior group. The parameter Jy is assumed
drawn from a gamma density with parameters 79 and ¢g; 0p is assumed a priori to be
drawn from a beta density with parameters 1y and wy.

As discussed in the previous section, combining data and prior information at dif-
ferent levels within a reliability diagram has often proven problematic, both from the
perspectives of computational tractability and model consistency. Our solution to this
conundrum is to simply re-express non-terminal node probabilities in terms of termi-
nal node probabilities using deterministic relations derived from an examination of the
system reliability diagram. For example, from Figure 1, it is evident that the proba-
bility that the guided missile component functions, p7, is equal to the product of the
probabilities that the warhead (p1g), fuze (p11), flight motor (p12), eject motor (p;3),
airframe (p14), missile battery (pi5), control assembly (p16), and guidance assembly(p;17)
all function. Thus,

17
pr =[] »i (3)
i=10
and, for example, the prior specification on p7 is interpreted as a prior specification on
this product:

17
Frm(@7 | 77.my Kim) = frm (]| i1 77.m, Nin)

i=10
17 N7 m 17 Nm(1=77 )
X [sz] ll—Hpi]
i=10 i=10

Note that variable substitutions based on the reliability diagram do not uniquely
identify a joint distribution on the terminal node probabilities, in this case p;g through
p17. However, together with the assumption that the distributions of these probabilities
are defined with respect to Lebesgue measure on the unit interval and the given hier-
archical specification, such substitutions do yield a uniquely defined joint distribution
on these parameters.
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Combining these assumptions leads to a joint posterior distribution on the baseline
model parameters proportional to

[ 7N7p7K7g?J|$7n77r7a7187c71’7767€77-7¢7¢7w](X
X H pixi(l _pi)ni X H G(Km§ Cmﬂ?m)

€Sy m:3(i,m)€eSy

x ] Bi; Namim+ 1, Nu(l — i) + 1) (4)
(i,m)€eS]

X H B(pi ; Kpm,g +1, K (1 - pm,g) +1) (5)
(i,m)€Sy

x [ Bwi; Jooo, Jo(1 - e0) +1) (6)
1€S3

X H B(Pm,g 5 Om, fm) X B(QO ; 7vb07w0)
m:3(i,m)eSy

X G(JO y 70, wO) X H G(Nma A, Bm) (7)

m:3(i,m)€eS

In this expression, values of non-terminal node probabilities are assumed to be
expressed in terms of the appropriate functions of terminal node probabilities, as defined
from the system fault diagram.

An examination of the contributions to the joint posterior distribution arising from
the three types of prior information (4-6) reveals obvious similarities, but there are
also important distinctions between these parameterizations. For example, in (4), the
value of Ny, represents the precision of the expert’s opinion, while in (5) and (6), K,
and Jy describe the similarity of item reliabilities within a grouping.

2.1 Hierarchical prior model

The hierarchical prior model on the terminal node probabilities plays a crucial role in
rendering estimates of the overall system reliability insensitive to the level of detail
included in the system fault diagram. As an illustration of this point, consider a simple
system comprised of three components, and suppose that a single binomial observation
with 4 successes and 1 failure is observed at the system level. Then without a hierar-
chical specification on the component probabilities and under the model assumptions
stated above, the posterior distribution on the system reliability would be proportional
to where the system reliability, p1, is assumed to equal papsps.

With the implied uniform distribution on ps—py4, the posterior mean of p; in this
model is 0.507; when the system is not decomposed into subsystems and a uniform prior
is assumed on pj, the posterior mean on p; (with a uniform prior) is .714. Furthermore,
under such naive model specifications, the bias attributable to adding subcomponents
to the fault tree becomes more severe as the number of subcomponents in the system
increases.

In contrast, the hierarchical prior specification on py—pg with g = wy = 0.5 results
in a posterior mean of 0.718 for p;, while the same specification with ¢y = wy = 1.0
results in a posterior mean of 0.687. Both estimates are largely insensitive to the
number of subcomponents specified for the system.
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2.2 Estimation strategies for the baseline model

The joint distribution on model parameters specified in (7) does not lend itself to ana-
lytical evaluation of the system or component reliabilities. However, a component-wise
Metropolis-Hastings algorithm can be implemented in a relatively straightforward way.
In our version of such a scheme, we used a random-walk Metropolis-Hastings algo-
rithm with Gaussian proposal densities specified on the logistic scale for the terminal
node probabilities, as well as for gy and p;, 4. Precision parameters were similarly
updated using a random-walk Metropolis-Hastings scheme with Gaussian increments
specified on the logarithmic scale. The resulting Metropolis-Hastings algorithm was
implemented using a general-purpose Java MCMC system developed at Los Alamos
National Laboratory (Graves, 2001).

3. ANALYSIS OF ANTI-AIRCRAFT MISSILE DATA

Anti-aircraft missiles are intended to provide defense from attacking enemy aircraft.
Currently, the United States has over 15 different anti-aircraft missiles in its arsenal.

Each of these weapons is comprised of numerous components and subsystems, many
of which are depicted schematically for a selected weapon system in Figure 1. Data
available for assessing the reliability of this particular system include 45 observations
on each of the components Cy, Cs5, Cg, C11, C12, C13, C15 and Cig, and 126 tests of com-
ponent C3. The bulk of the test data, however, was performed at the system level,
where over 1400 tests were performed. This situation is atypical of most applications
in which component-level tests dominate, but this feature of the data offers an ideal
opportunity for us to test our reliability model by comparing results obtained both
with and without the full-system data. No component-level tests were performed on
components C5, C7, Cg, Cy, C1g, Cr4, and C7.

Upon conferring with an expert, reliability classes were formed as follows. Compo-
nents 2-4 were assigned to Group 1, Components 5-9 to Group 2, Components 10-17 to
Group 3, and Components 5, 6, and 8-17 to Group 4. Informative priors with common,
fixed group means (mi-73) and a single, common precision parameter (N2 3) were as-
sumed for each of Groups 1-3. A common precision parameter was incorporated for
each group owing to the fact that a single expert provided all prior information. A hi-
erarchical prior with unknown mean and precision parameter (gy and .Jy, respectively)
was assumed for components in Group 4. Also, gamma priors with parameters (5,1)
were posited for both precision parameters (Nj 23 and Jp), and a non-informative prior
(1o = wp = 0.5) was assumed for gg.

Applying the model discussed in Section 2, we obtained the posterior distributions
on the component reliabilities for each of the components and the expert precision pa-
rameters. The system reliability posterior distributions with the system data included
and system data excluded are plotted in Figure 2. We note the agreement between the
two posterior distributions (full system tests included vs. full system tests excluded).
In every case, the 95% posterior probability region calculated by excluding full system
data includes the posterior distribution obtained with the full system data. The scales
from these plots have been removed due to classification concerns, although it can be
noted that each plot contains a subinterval of (0, 1) of length 0.1 or less. Also of interest
is the posterior distribution for the expert precision parameter Nj23. The posterior
mean for this distribution is 12.2. This suggests that the expert’s opinion is worth
approximately 12 full system tests. Given the prior mean of 5, we conclude that the
expert was reasonably well calibrated with the system structure and data.
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3.1 Diagnostics

Two concerns commonly encountered in modeling system-level reliabilities using fault
diagrams like that depicted in Figure 1 involves the extent to which different compo-
nents function independently and whether system (or subsystem) reliability decreases
when components are assembled. A simple cross-validation diagnostic useful for as-
sessing the importance of these influences can be constructed by iteratively omitting
data collected at each node from the estimation procedure, and then examining the
predictive distribution for the omitted datum.

Such a procedure was applied to data obtained for this missile system, and resulted
in an estimate of 0.83 for the predictive probability of observing fewer successes at the
system-level than were actually observed. It therefore seems that there is little evidence
to support the notion that the reliability of the system was degraded as components
were assembled and required to operate as a unit.

There was, however, some indication of model lack-of-fit at the subcomponent level.
For components 10 and 17, the predictive probability for observing fewer successes than
were obtained at these nodes was approximately 0.035. The same number of failures was
observed at each of these components, and these two components had the highest failure
rate of any components in the system. Model lack-of-fit in this instance might thus be
attributed to the fact that the hierarchical mean estimated for the terminal nodes, oy,
increased substantially when the datum for either of these nodes was omitted, resulting
in an overly optimistic estimate of this probability. Possible remedies for such model
inadequacy would be to stochastically decrease the prior assigned to the value of .Jy, or
to introduce a separate hierarchical group for these nodes. In this case, neither remedy
appeared to substantially affect estimates of system reliability in follow-on sensitivity
analyses.

4. EXTENSION TO DEGRADATION MODELS

In many complex systems, reliabilities of system components degrade with age, and
such degradation processes can be modeled naturally within the hierarchical frame-
work described above. For purposes of illustration, we describe this extension within
the context of logistic regression models on component reliabilities; generalizations to
broader classes of regression models follow along similar lines.

In the baseline model, all component reliabilities are specified in terms of the re-
liabilities of terminal nodes, thus making it possible to consistently incorporate in-
formation collected at multiple component levels. A similar approach is adopted for
modeling the degradation of component reliabilities over time. Specifically, for each
terminal node in the system, say node i, we assume that

Dij /
]_ pr— .. .

where z;; denotes a known vector of covariates relevant for predicting p;; (the success
probability of component ¢ under conditions z;;) and 3; denotes a regression coefficient
specific to terminal node ¢. In the case of the missile data discussed later, the vectors
z contain a constant term (intercept) and component age at time of testing or prior
specification.

The hierarchical structure assumed for the component reliabilities in the baseline
model is extended to the regression setting by assuming that, for terminal nodes within
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Figure 2. Posterior distributions for the reliability of the system represented in Figure 1. In
each pair of plots, the more peaked curve represents the marginal posterior density based on all
test data, while the more dispersed curves represent the marginal posterior density using only
component-level data (i.e., excluding system-level tests).

a common grouping, the vectors 3; are drawn from a multivariate normal distribution
with mean, say, o and covariance matrix C. In this application, vague priors are
assumed for o and C.

Specification of prior expert opinion is also modified to account for changes in
component reliabilities over time. This is accomplished by substituting

eXP(ZzI'jB)
1+ eXP(Zl{jB)

for p;; in equations (1) and (2) for an assumed value of the covariate vector z;;. Often,
zi; is chosen to correspond to the state of a component at time 0.

Estimation of model parameters proceeds as in the baseline model, except that a
random-walk Metropolis-Hastings update for the values of 8; replaces the corresponding
updates of the values of p;;.
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4.1 Application to missile data

The success/failure data described in Section 3 were accompanied by the age, in months,
of each subsystem at the time of the tests. Tests were conducted at 19 distinct times
for components Cy, C5, Cg, C11, C12, C13, C15 and C1g, while the 126 tests of Component
3 were conducted at 23 distinct times. The 1,400 system-level tests were performed at
106 distinct system ages. Ages at which system tests were conducted ranged from 0
to 143 months, though most system-level data was collected from systems less than 3
years old.

A A
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N N
_ N

S

/AN
_ N
N
N
N

_ N
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Figure 3. Posterior distributions for the reliability of the missile-system components at time
0 and 120 months. In each case, the more disperse density corresponds to the posterior density
estimated for 120 months.

A plot of the marginal posterior densities on the reliabilities of components at
different levels within the system is depicted in Figure 3. These plots were obtained by
assuming that all prior opinion elicited in the baseline model applied at time 0 and using
all system- and component-level data. As expected, greater uncertainty is associated
with the reliability of most estimates at 10 years, owing to the comparatively high
posterior uncertainty in many of the values of the regression coefficient corresponding
to system age (B; in (8)). Note also that the posterior mean of the reliability of most
components decreases gradually over time, again as is expected.
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Plots of the marginal posterior distributions of the slope parameters of the terminal
nodes are depicted in Figure 4. These plots highlight the extent to which many of the
individual regression parameters are only weakly identifiable. In particular, for terminal
nodes and subcomponents for which data were collected at a limited number of time
points, and for which no failures were observed, many logistic regression curves provide
nearly equivalent fits in the vicinity of the observed data. This phenomenon is further
exacerbated at the subsystem level when data at lower-level components is sparse.
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ANEANERY LN
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Figure 4. Posterior distributions for the logistic slope parameters for terminal nodes. Note
that Components 3, 13, and 15 experienced no failures in component-level testing.

5. CONCLUSIONS

The proposed hierarchical model offers several advantages over existing models for sys-
tem reliabilities. Among these are the ease of including diverse sources of information
at different levels of the system into the model for overall system reliabilities, a coher-
ent framework for incorporating multiple sources of prior expert opinion through the
treatment of expert opinion as (imprecisely-observed) data, and the natural elimina-
tion of aggregation errors through the definition of non-terminal probabilities using the
assumed structure of the system fault tree and terminal node probabilities.
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A simplistic form of our hierarchical model for reliability was described in this
paper. In future work we plan to extend this framework to include non-serial systems
and extensions of the model to account for dependencies between component failures
within a system or subsytem.
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